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Electrokinetic instabilities in thin microchannels
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An important class of electrokinetic, microfluidic devices aims to pump and control electrolyte
working liquids that have spatial gradients in conductivity. These high-gradient flows can become
unstable under the application of a sufficiently strong electric field. In many of these designs, flow
channels are thin in the direction orthogonal to the main flow and the conductivity gradient. Viscous
stresses due to the presence of these walls introduce a stabilizing force that plays a major role in
determining the overall instability. A thin channel model for fluid flow is developed and shown to
provide good agreement with a complete three-dimensional model for channel aspect ratios
&0.1. © 2005 American Institute of Physics. [DOI: 10.1063/1.1823911]
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Instabilities in electrically driven microchannel flo
with conductivity gradients have received recent attentio
the literature1–3 due to their relevance in micrototal analy
systems.4–6 Melcher and co-workers developed much of
basic framework on these electrohydrodynamic instabi
in the 1960s–1980s(see Ref. 7 and references there).
Hoburg and Melcher first studied the basic conductivity
dient instability that is the focus of this work.8 In recen
work, three of us(B.D.S., H.L., J.G.S.) with Oddy and Che
have experimentally, analytically, and numerically inve
gated electrokinetic instabilities at the interface of two liq
streams in a microchannel subjected to an electric field
pendicular to the conductivity gradient.1 In that work we
demonstrated via three-dimensional(3D) linear analysis tha
the top and bottom walls of a shallow channel stabilized
flow with respect to two-dimensional(2D) predictions. Two
of us(J.G.S., H.L.) together with Chen and Lele also show
that depth-averaged linearized governing equations cou
used to analyze convective instabilities in microchann2

Here we build upon this prior work and present a nonlin
model for electrokinetically driven flows in thin channe
We find good agreement when we compare our mod
results obtained with 3D simulations.

The geometry of our study is provided by the exp
mental shallow channel described in detail in Ref. 1.
channel depth in thez direction, 2d, is shallow compared t
the channel width in they direction, 2H. The flow and im
posed electric fieldEo are along the channel length in thex
direction. Initially, the conductivity is uniform in thez direc-
tion and varies in they direction. Spontaneous charge se
ration at the walls of the channel form electric double la
(EDLs) with a thickness characterized by the Debye leng9

Typical microchannel flows have an EDL of 10 nm or l
while the channel dimensions are typically 10mm or greate
meaning that the liquid in the bulk may be modeled with
velocity conditions prescribed at the walls.9,10 In the thin
channel configuration the instability generates a strong
ondary flow predominantly in thex-y plane.
We start the analysis with the governing equations pro-
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vided by Linet al.1 These equations already make use of
assumption that the charge density instantly relaxes
pared to the rate of change of the conductivity.

0 = = · ss = Fd, s1d

e¹2F = − rE, s2d

= ·v = 0, s3d

Ds

Dt
= D¹2s, s4d

r
Dv

Dt
= − = P + m¹2v − rE = F, s5d

wherev is the velocity,s is the conductivity,F is the electric
potential,rE is the charge density,r is the mass density,D is
the diffusivity, e is the permittivity, andm is the viscosity.

To nondimensionalize the problem, we follow Ref.
only, we introduce two length scales into the problem.
scales used arefxg=H, fyg=H, fzg=d, fu,vg=Uev, fwg
=Uevd, ftg=H /Uev, fFg=EoH, frEg=eEo/H, fsg=so, and
fPg=eEo

2, where the electroviscous velocity isUev
=eEo

2Hd2/m and the channel aspect ratio isd=d/H. This
scaling yields the following equation set:

0 = d2s¹H · s¹HFd + ssFzdz, s6d

− d2rE = Fzz+ d2¹H
2 F, s7d

0 = ¹H ·u + wz, s8d

d2Ra
Ds

Dt
= szz+ d2¹H

2 s, s9d

d2Re
Du

= − ¹HP + d2¹H
2 u + uzz− rE¹HF, s10d
Dt
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d4Re
Dw

Dt
= − Pz + d2sd2¹H

2 w + wzzd − rEFz, s11d

where we use¹H;s]x,]yd and u;su,vd for convenience
Subscriptz denotes partial differentiation with respect to t
direction. The Reynolds and electric Rayleigh numbers
respectively, Re=rUevH /m and Ra=UevH /D.1,2 This scaling
is appropriate for cases where the thickness of the diffu
layer between the regions of high and low conductivity is
the order of the width of the channel. The normal com
nents of velocity, electric field, and conductivity gradi
vanish at the walls. The liquid flow field is also bounded
a slip plane which excludes the EDLs of the system an
which the electroosmotic velocity is directly proportiona
the local field9,10

v · t = −
1

Rv
z = F · t , s12d

where 1/Rv=zRH /Eod
2 is the ratio of electroosmotic velo

ity to electroviscous velocity.2 We adopt the empirical corr
lationszssd=ss /sRd−1/3 wheresR is a reference conductivi
at which thez-potential becomesz=zR.1,11

We make the asymptotic assumption that all varia
follow an expansion of the formf = fo+d2f1+¯ whered is a
small parameter. The leading order terms in the conduc
equation(9) and the relaxation equation(6) are

ssoFozdz = 0, s13d

sozz= 0. s14d

The Neumann boundary conditions atz= ±1 for both
variables require thatso=sosx,y,td andFo=Fosx,y,td. Pro-
ceeding to the first-order correction in the voltage pote
F1 and conductivitys1 and again applying Neumann con
tions atz= ±1 yields the equations forso, Fo, andrEo:

rEo = − ¹H
2 Fo, s15d

=H · sso¹HFod = 0, s16d

RaS ]so

]t
+ ūo ·¹HsoD = ¹H

2 so. s17d

The z-momentum equation(11) at leading order is

Poz= − rEoFoz. s18d

Since Fo does not vary in z, we conclude thatPo

=Posx,y,td. The momentum equations in thex-y plane to
leading order become

uozz= ¹HPo + rEo¹HFo. s19d

Since the right-hand side is not a function ofz we can inte
grate to obtain the velocity as a function ofz and the depth
averaged velocityū as

uo =
z2 − 1

f¹HPo + rEo¹HFog −
z¹HFo , s20d
2 Rv
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ūo =
− 1

3
f¹HPo + rEo=HFog −

z¹HFo

Rv
. s21d

From continuity we can solve forwszd and show thatw̄=0,
which allows us to obtain the pressure in terms of the vo
potential,

¹H
2 Po = ¹H ·S3z¹HFo

Rv
− rEo¹HFoD . s22d

Equations(15)–(17), (21), and(22) represent a complete s
of nonlinear, depth-averaged, and two-dimensional equa
for application toward thin channels.

We can analyze the instability in a periodic channe
linearizing the equations about a base state solution

normal modes;fsx,y,td= fbsyd+ f̂sydeikx+st. For our study, th
steady base state consists of an initial conductivity gra
sbsyd and an imposed uniform electric field in thex direc-
tion. These conditions generate a nonzero electroosmou
velocity gradientub=zfsbsydg /Rv. The linearization resul

in the following set of equations for the disturbancesP̂, F̂,
and ŝ:

ikŝ = sb¹H
2 F̂ +

dsb

dy

dF̂

dy
, s23d

¹H
2 P̂ =

3

Rv
Sik

dz

ds
ŝ −

dz

dy

dF̂

dy
D − S3z

Rv
+ ikD¹H

2 F̂, s24d

sŝ =
¹H

2 ŝ

Ra
−

ikzŝ

Rv
+ S1

3

dP̂

dy
+

z

Rv

dF̂

dy
Ddsb

dy
. s25d

Neumann boundary conditions apply for each of the v
ables where the pressure boundary condition correspon
the zero normal velocity condition.

To validate the model, we compare the flow fields c
puted from Eqs.(23)–(25) to the three-dimensional solutio
Details of the three-dimensional simulation are discusse
Ref. 1. In Fig. 1 we show a representative snapshot o
flow field in a cross-streamsy-zd plane as computed from t
linearized thin channel model and the three-dimens
model, respectively. Figure 1 shows solutions where lin
ization about the base state is valid. Results show exc
agreement in the shape and magnitude of the flow fie
this and many other cases. The most striking differenc
seen at the upper and lower boundaries for theû velocity.
The depth-averaged formulation cannot prescribe the bo
ary conditions onû at y= ±1 boundaries, which contras
with the electroosmotic boundary condition in the 3D form
lation. This difference in the boundary condition is expe
due to the overall reduction of the order of the equation
making a 2D approximation of a 3D flow. A boundary-la
approach was implemented to show that this effect is h
order in d and does not appreciably influence the inte
flow. Our numerical simulation confirms this result.

A representative stability diagram for the flow in a 1
aspect ratio channel is shown in Fig. 2. The results are s
in dimensional form using the physical parameters prov

in Ref. 1. The thin channel model provides good agreement
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at low wavenumbers when compared to the complete
formulation.1 We see good agreement fork,2 and find tha
the depth-averaged model loses accuracy as the waven
increases. We have confirmed that at higher aspect ratio
model provides accurate results at higher wavenumbers
gesting the model can only capture motions wherekd is
small. Despite this shortcoming, the current 2D model
vides more realistic physics and more accurate results t
2D analysis that does not account for the thin geometry1

FIG. 1. Representative snapshot comparison of the flow field in thy-z
plane computed from the depth-averaged(left) and the three-dimension
model(right). Contours are provided for thex component of the perturbatio
velocitiesû and thex vorticity v̂x. Contour levels are the same on the
and right, are normalized by the maximum in the 3D field, and have co
increments of 0.2. The channel aspect ratio is 10:1.

FIG. 2. Contours of the dimensional real growth rate for a channel wd
=0.1. The solid lines are from the linearized three-dimensional equa
and the dotted lines are from the depth-averaged model. Conditions a
same as in Ref. 1 and the solid curves correspond to the data prese
Fig. 10 of Ref. 1; however, note that the scaling for Ra has chang

incorporate the thin channel.
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The stability behavior can be interpreted more conc
if we consider the limit where the diffusion of conductivity
slow compared to the convective motionssRa=`d and the
electroviscous velocity dominates over electroosmotic ve
ity sRv=`d. Equations(23)–(25) can be reduced to a sing
equation with no free parameters, only the assumed i
conductivity profilesb,

sFsb¹H
2 +

dsb

dy

d

dy
GF̂ =

k2

3

dsb

dy

dF̂

dy
. s26d

The solution to Eq.(26) (for our assumed conductivity pr
file) is shown as the thick solid line in Fig. 3. On the sa
figure we also compare results from the full thr
dimensional simulation at conditions where Ra andRv are
both large. The 3D results collapse on this single curv
small wavenumbers. The electroviscous time scale is t
fore an excellent indicator in determining the character
growth rate of the instability(see also Fig. 8 in Ref. 1).

We can now turn to the solution of Eqs.(23)–(25) to
complete our understanding. In Fig. 4(a) we show contour
of the real part of the growth rate as a function of waven
ber andRv in the infinite Ra limit. AboveRv=10 the elec
troosmotic effect has little influence on the overall stab
picture; this result agrees with that of Ref. 2. In Fig. 4(b) we
show contours of the real part of the growth rate as a f
tion of wavenumber and Ra in theRv=` limit. For Rayleigh
numbers above 10 000, Fig. 3 is an accurate model o
flow.

Diffusion alters the base conductivity state as a func
of time, an effect not captured in Eqs.(23)–(25). Therefore
the results in Fig. 4(b) are not valid for cases where the ti
scale for instability is long compared to the time for diffus
across the width(y direction) of the channel. For such cas
perturbations cannot grow quickly enough to overcome
diffusion of the base state. This ratio of time scales in dim

e
in

FIG. 3. Real growth rate as a function of wavenumber from Eq.(26) (thick
solid line) compared to results from the complete 3D model. The data
results from channels with different aspect ratios, 1:10(1), 1:20 (p), and
1:40 (s). For the 3D simulations we used Ra=10 000 andRv=20.
sionless form issrRa and we usesrRa.50 as a criterion to
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determine if the diffusing base state is relevant, whersr

denotes the real part of the growth rate. The criterio
somewhat arbitrary and there is not a clearly defined re
boundary. There are three important regimes:(I) negative
growth rates where mixing of the base state occurs by d

FIG. 4. (a) Contours of the real growth rate as a function of wavenum
and Rv when Ra=̀ . (b) Contours of the real growth rate as a function
wavenumber and Ra whenRv=`. We find that aboveRv=10 and Ra
=10 000 Fig. 3 is a valid picture of the stability behavior. Contours in
figures are generated from Eqs.(23)–(25). The three regimes I, II, and III a
denoted in part(b) (see text).
sion alone,(II ) marginally unstable, low magnitude positive

Downloaded 05 Mar 2005 to 128.12.196.5. Redistribution subject to AIP 
growth rates where diffusion of the base state dominate
growth of the perturbation, and(III ) the regime wher
growth rates are positive and large compared to diffusio
the base state, and rapid mixing occurs due to the insta
Further discussion of the unsteady, diffusive base sta
found in Ref. 1.

In conclusion, we have shown the depth-averaged m
for electrokinetic flows in thin channels provides good ag
ment when compared to three-dimensional simulations.
stability analysis can be collapsed to a single equation i
limit of high electric fields and negligible electroosmo
flow which simplifies analysis and understanding. We
that the model can only reliably capture motions wherekd is
small, while 3D simulations and experiments indicate h
wavenumber disturbances are often prominent. Howeve
underlying behavior of the instability is well captured by
model and the predictions are valid as long as the flow
tures remain “thin.” Higher order corrections or nonlin
three-dimensional simulations are needed to fully m
higher wavenumber flow.
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