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Electrokinetic instabilities in thin microchannels
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An important class of electrokinetic, microfluidic devices aims to pump and control electrolyte
working liquids that have spatial gradients in conductivity. These high-gradient flows can become
unstable under the application of a sufficiently strong electric field. In many of these designs, flow
channels are thin in the direction orthogonal to the main flow and the conductivity gradient. Viscous
stresses due to the presence of these walls introduce a stabilizing force that plays a major role in
determining the overall instability. A thin channel model for fluid flow is developed and shown to
provide good agreement with a complete three-dimensional model for channel aspect ratios
=0.1. ©2005 American Institute of PhysidDOl: 10.1063/1.1823911

Instabilities in electrically driven microchannel flows vided by Linet all These equations already make use of the
with conductivity gradients have received recent attention irassumption that the charge density instantly relaxes com-
the literaturé™ due to their relevance in micrototal analysis pared to the rate of change of the conductivity.
systems“.‘6 Melcher and co-workers developed much of the

basic framework on these electrohydrodynamic instabilities 0=V -(cV®), 1)
in the 1960s-1980%¢see Ref. 7 and references thejein 5

Hoburg and Melcher first studied the basic conductivity gra- eV°D = - pe, (2)
dient instability that is the focus of this wofkin recent

work, three of ugB.D.S., H.L., J.G.S.with Oddy and Chen V.v=0, 3

have experimentally, analytically, and numerically investi-

gated electrokinetic instabilities at the interface of two liquid Do __ _,
streams in a microchannel subjected to an electric field per- 't ~ DVa, (4)
pendicular to the conductivity gradiejntln that work we

demonstrated via three-dimensioli@D) linear analysis that v

the top and bottom walls of a shallow channel stabilized the pa =— VP+uVu -pe VO, (5)

flow with respect to two-dimension&2D) predictions. Two
of us(J.G.S., H.L) together with Chen and Lele also showed \ynerey is the velocity,o is the conductivityd is the electric
that depth-averaged linearized governing equations could bﬁotential,pE is the charge density, is the mass densityp is
used to analyze convective instabilities in microchanﬁels.the diffusivity, € is the permittivity, andu is the viscosity.
Here we build upon this prior work and present a nonlinear 14 pondimensionalize the problem, we follow Ref. 1:
model for electrokinetically driven flows in thin channels. only, we introduce two length scales into the problem. The
We find good agreement when we compare our model tQcales used aréx]=H, [y]=H, [z]=d, [u,0]=Ug,, [W]
results obtained with 3D S|mulat|_ons. _ =Ugd, [t1=H/Uy, [®]1=E.H, [pgl=€E,/H, [o]=0, and
The geometry of our study is provided by the eXperi-[p]=¢E2, where the electroviscous velocity iU,
mental shallow channel described in detail in Ref. 1. The:EE§H52/,u and the channel aspect ratio &d/H. This

channel depth in the direction, 2, is shallow compared to scaling yields the following equation set:
the channel width in thg direction, 4. The flow and im-

posed electric field, are along the channel length in tke 0=8(Vy - aVud) + (a®,),, (6)
direction. Initially, the conductivity is uniform in thedirec-

tion and varies in the direction. Spontaneous charge sepa- - &pg = ®,,+ FVi®, (7)
ration at the walls of the channel form electric double layers

(EDLs) with a thickness characterized by the Debye Ieﬁgth. 0=Vy-U+w,, (8)

Typical microchannel flows have an EDL of 10 nm or less

while the channel dimensions are typically Lén or greater Do

meaning that the liquid in the bulk may be modeled with slip ~ &’Ra— = o, + V30, (9

velocity conditions prescribed at the wall¥’ In the thin Dt

channel configuration the instability generates a strong sec-

onds\r/y flow predomlnantly in the-y plane.. ' ézRe% -V, P+ 52V,2_,u + Uy~ peVp, (10)
e start the analysis with the governing equations pro- Dt
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54R9DF\::V -P+ 52(52V HW + W) = pe®,, (1D U= ?j-[VHPo"' PeoVHPo] = %- (21)
where we uséVy=(d,dy) andu=(u,v) for convenience. From continuity we can solve far(z) and show thatv=0,
Subscripiz denotes partial differentiation with respect to that which allows us to obtain the pressure in terms of the voltage
direction. The Reynolds and electric Rayleigh numbers arepotential,
respectively, RepUg,H/u and RaJ, H/D.>* This scaling
is appropriate for cases where the thickness of the diffusion VﬁPo: A (
layer between the regions of high and low conductivity is on
the order of the width of the channel. The normal CompO-Equations(15)_(17), (21), and(22) represent a Comp|ete set
nents of velocity, electric field, and conductivity gradient of nonlinear, depth-averaged, and two-dimensional equations
vanish at the walls. The liquid flow field is also bounded byfor application toward thin channels.

a slip plane which excludes the EDLs of the system and at \We can analyze the instability in a periodic channel by
which the electroosmotic velocity is directly proportional to linearizing the equations about a base state solution using
the local field" normal modesf(x,y,t)=fy(y)+f(y)e¥*st. For our study, the

1 steady base state consists of an initial conductivity gradient

V-t==—(VO]-t, (12 op(y) and an imposed uniform electric field in tkedirec-

R, tion. These conditions generate a nonzero electroosrmotic
where 1R,=¢gH/E,d? is the ratio of electroosmotic veloc- Velocity gradientu,={lo,(y)]/R,. The linearization results
ity to electroviscous velocitfWe adopt the empirical corre- in the following set of equations for the disturbands®,
lations (o) = (o/ or) ¥ whereon is a reference conductivity ando:
at which theZ-potential becomeg= (gt

3¢V

2= PEOVHCI)0> . (22

dO'b dq)

We make the asymptotic assumption that all variables i = abV2<I> (23)
follow an expansion of the forrh=f,+ &, +--- wheredis a dy dy’
small parameter. The leading order terms in the conductivity
equation(9) and the relaxation equatiq®) are d d¢ ddb 3
vﬁp_— A, deab) (3 G V2D, (24
(0%07),=0, (13 R, dO’ dy dy Rv
6020, (14 o Vao ke <1dP ¢ d@)dab 25
Ra R, 3dy R,dy

The Neumann boundary conditions &t +1 for both
variables require that,=o,(x,y,t) and®,=d,(x,y,t). Pro-  Neumann boundary conditions apply for each of the vari-
ceeding to the first-order correction in the voltage potentiabbles where the pressure boundary condition corresponds to
@, and conductivityo; and again applying Neumann condi- the zero normal velocity condition.

tions atz=+1 yields the equations far,, ®,, and pg.: To validate the model, we compare the flow fields com-
5 puted from Eqs(23)—«25) to the three-dimensional solution.
= Vi®o, (15) Details of the three-dimensional simulation are discussed in
Ref. 1. In Fig. 1 we show a representative snapshot of the
Vi (0,Vu®,) =0, (16) flow field in a cross-strearty-z) plane as computed from the
linearized thin channel model and the three-dimensional
model, respectively. Figure 1 shows solutions where linear-
a(— + U VHtfo) Voo (17)  ization about the base state is valid. Results show excellent
agreement in the shape and magnitude of the flow field in
The zz-momentum equatiofil) at leading order is this and many other cases. The most striking difference is
seen at the upper and lower boundaries for dheelocity.
Poz= = pecPos (18)  The depth-averaged formulation cannot prescribe the bound-

ary conditions onll at y=+1 boundaries, which contrasts
with the electroosmotic boundary condition in the 3D formu-
lation. This difference in the boundary condition is expected
due to the overall reduction of the order of the equations in

Ugyy= ViPy + peViy®s. (19) making a 2D approximation of a 3D flow. A'boundar.y-lalyer

approach was implemented to show that this effect is higher

Since the right-hand side is not a functionzfve can inte- order in 6 and does not appreciably influence the interior
grate to obtain the velocity as a function oand the depth- flow. Our numerical simulation confirms this result.

Since &, does not vary inz, we conclude thatP,
=P,(x,y,t). The momentum equations in they plane to
leading order become

averaged velocity as A representative stability diagram for the flow in a 10:1
5 _— aspect ratio channel is shown in Fig. 2. The results are shown
U= [ViiPy + peVi®,] - |:t>| o (20) in dimensional fqrm using the physical .parameters provided
: in Ref. 1. The thin channel model provides good agreement
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FIG. 3. Real growth rate as a function of wavenumber from(E6) (thick

solid line) compared to results from the complete 3D model. The data show
z z results from channels with different aspect ratios, 1(30, 1:20 (*), and
1:40 (O). For the 3D simulations we used Ra=10 000 & 20.

FIG. 1. Representative snapshot comparison of the flow field inythe

plane computed from the depth-averagéft) and the three-dimensional

model(right). Contours are provided for thecomponent of the perturbation

velocitiesl and thex vorticity @,. Contour levels are the same on the left . . . .

and right, are normalized by the maximum in the 3D field, and have contour T he stability behavior can be interpreted more concisely

increments of 0.2. The channel aspect ratio is 10:1. if we consider the limit where the diffusion of conductivity is
slow compared to the convective motiofRa=x) and the
electroviscous velocity dominates over electroosmotic veloc-

at low wavenumbers when compared to the complete 3[5ty (R,{:oc)..Equations(ZS)—(ZS) can be reduced to a singlg'
formulation! We see good agreement fior- 2 and find that equation with no free parameters, only the assumed initial

the depth-averaged model loses accuracy as the Wavenumﬁ:@rnducwIty profileay,
increases. We have confirmed that at higher aspect ratios, the dop d |- Kdoy ddb
model provides accurate results at higher wavenumbers sug- S{UbVﬁ + ——} =
gesting the model can only capture motions whkéeis dy dy 3 dy dy
small. Despite this shortcoming, the current 2D model pro-The solution to Eq(26) (for our assumed conductivity pro-
vides more realistic physics and more accurate results thanfie) is shown as the thick solid line in Fig. 3. On the same
2D analysis that does not account for the thin geonetry. figure we also compare results from the full three-
dimensional simulation at conditions where Ra dXdare
both large. The 3D results collapse on this single curve at
small wavenumbers. The electroviscous time scale is there-
fore an excellent indicator in determining the characteristic
growth rate of the instabilitysee also Fig. 8 in Ref.)1

We can now turn to the solution of Eq&3)—(25) to
complete our understanding. In Figiafwe show contours
of the real part of the growth rate as a function of wavenum-
ber andR, in the infinite Ra limit. AboveR,=10 the elec-
troosmotic effect has little influence on the overall stability
picture; this result agrees with that of Ref. 2. In Fighywe
show contours of the real part of the growth rate as a func-
tion of wavenumber and Ra in th,=o° limit. For Rayleigh
numbers above 10 000, Fig. 3 is an accurate model of the
flow.
10°t . 110‘ Diffusion alters the base conductivity state as a function
10’ 10 of time, an effect not captured in Eq23)—«25). Therefore,

the results in Fig. é) are not valid for cases where the time

FIG. 2. Contours of the dimensional real growth rate for a channel &ith Scale for instability is long compared to the time for diffusion
=0.1. The solid lines are from the linearized three-dimensional equationgcross the widtliy direction) of the channel. For such cases
and the dptted lines are from t.he depth-averaged model. Conditions are ”}?erturbations cannot grow quickly enough to overcome the
same as in Ref. 1 and the solid curves correspond to the data presented'in . . . . . .
Fig. 10 of Ref. 1; however, note that the scaling for Ra has changed t&liffusion of the base state. This ratio of time scales in dimen-
incorporate the thin channel. sionless form iss;Ra and we uss,Ra>50 as a criterion to

(26)

k
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growth rates where diffusion of the base state dominates the
growth of the perturbation, andlll) the regime where
growth rates are positive and large compared to diffusion of
the base state, and rapid mixing occurs due to the instability.
Further discussion of the unsteady, diffusive base state is
found in Ref. 1.

In conclusion, we have shown the depth-averaged model
for electrokinetic flows in thin channels provides good agree-
ment when compared to three-dimensional simulations. The
stability analysis can be collapsed to a single equation in the
limit of high electric fields and negligible electroosmotic
flow which simplifies analysis and understanding. We note
that the model can only reliably capture motions whefés
small, while 3D simulations and experiments indicate high
wavenumber disturbances are often prominent. However, the
(b) underlying behavior of the instability is well captured by our

(a) F

10™

105E model and the predictions are valid as long as the flow fea-
E tures remain “thin.” Higher order corrections or nonlinear
4/ three-dimensional simulations are needed to fully model

higher wavenumber flow.
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